

Thermomechanical effects

Development of

Hydrodynamic codes

Implementation of new

- Equations of state
- Material behaviour
- Damage models

Specific model development

 Multiscale modelling (microscopic, mesoscopic and macroscopic)

Tests and

Material selection

- Heat shield
- Shock absorber

Design/specification

- Stack up optimization
- Thermomechanical shielding

R&T measurements

Engineering & Modelling Hardening solutions and computation

Use of

- Hydrodynamic codes
- Finite element codes

Computation of

- Shock waves generation and propagation
- Thermostructural response
- Material and structure damage

Threat levels

Mission analysis

Characterization of materials by measurement of

- Impulse (ballistic carriage recoil)
- Free surface velocity (VISAR)
- Stress (Quartz gauge)
- Strain (Strain gauge)

Numerical model validation

- Spalling and delamination observation
- Melting / vaporization detection

Thermal effects

Physics

- Phase transition: melting, vaporization, sublimation
- Plasma generation
- Heat transfer

Thermomechanical effects

- Thermo-mechanical shock / laser shock generation and propagation
- Impulse: set into motion of targets
- Thermostructural response
- Damage

